ON THE POTENTIAL LOAD REDUCTION ON WIND TURBINES BY FLAP CONTROL USING MEASUREMENTS OF LOCAL INFLOW TO THE BLADES

Helge Aa. Madsen Andreas Fischer Torben Juul Larsen Christian Bak

DTU Wind Energy Technical University of Denmark P.O. 49, DK-4000 Roskilde, Denmark.

<u>hama@dtu.dk</u>

Outline

- □ Background/motivation
- Approach used in the study
- Results
- □ Summary

Potential load reductions by flap control ?

Why using trailing edge flaps ?

Deflecting a flap of 10-15% of blade chord 2 deg., the same change in lift as pitching the whole blade 1 deg. can be achieved

Troldborg, N., 2005, —Computational study of the RisøB1-18 airfoil with a hinged flap providing variable trailing edge geometryll, Wind Engineering, vol. 29, pp. 89–113.

What has been achieved in the past?

Table III.	Comp	arison of re	sults fr	om aeroser	voelastic inve	estigations v	vith active flaps on the Up	wind 5MW RWT.	1
article	c_f [%]	$dr_f/r [\%]$	$\delta \ [\pm^\circ]$	T.I. [%]	shear exp. [-]	V_{av} [M/s]	reduction in std of RBM [%	reduction in DEL [%]	controller
Riziotis et al. 2008	10	15-47	6	-	0.2	8, 12, 16	30-35 (range)	-	PID
Andersen et al. 2008	10	63	8	14-18	0.14	7, 11, 18	-	36.2-47.9	HPF+inflow
Lackner et al. 2009	10	20	10	NTM, ETM	0.2	8, 12, 16, 20	-	5.6-24.6	PID
Barlas et al. 2009	10	20	10	NTM	0.2	8, 11.4, 16	5.7-22.4	-	PID
Andersen et al. 2009	10	15-30	8	-	11.4	-	-	25-37	HPF
Resor et al. 2010	10	24	10	6	0.2	15	26-30.9	27-31.3	PD, HPF+notch
Wilson et al. 2010	10	24	10	6	0.2	15	13.3	15.5	LQR
Berg et al. 2010	10	25	10	6	0.2	15	8.7-18.1	10.9-17	PD, LQR
this article	10	18	8	6, NTM	0.2	7, 11.4, 15	10.9-30.7	10.9-27.3	MPC+inflow

Barlas, Thanasis; Van Der Veen, Gijs; van Kuik, Gijs; Model Predictive Control for wind turbines with distributed active flaps: Incorporating inflow signals and actuator constraints. Article first published online: 17 NOV 2011 DOI: 10.1002/we.503

What are the main parameters that constrain the load reduction potentials?

- > controller
- sensor input
- actuation time constants
- limits on size of flaps
- Imits on actuation amplitude
- \succ limits on flap angle velocity

Approach

We assume:

ideal controllerideal flow sensor input

> what load alleviation can then be achieved ?

Influence of:

flap amplitude
 flap angle velocity
 flow sensor separation
 actuation time constants

An investigation on maximum load reduction potential using inflow sensor

Aeroelastic simulations on the 5MW reference wind turbine

- constant rpm
- > 8m/s turbulent inflow
- both a flexible and stiff structural model simulated

The maximum load reduction potential

BLADE ROOT MOMENT -- 8m/s

The flapwise moment low pass filtered at different cut off frequencies

The maximum load reduction potential

The flapwise moment low pass filtered at different cut off frequencies.

Then rainflow counting on the processed signals

Load reduction potential – what can be achieved ?

- the maximum load alleviation potential is found by numerical filtering
- can we achieve something like this with flap control if we have the ideal control signals ?
 - what would it require of the flap characteristics, e.g. by trying to alleviate the dynamic loads between 0.1 and 1Hz

Presentation at XXIII ICTAM 19-24 August 2012, Beijing, China

I deal control signals – inflow data in the form of inflow angle and relative velocity

Inflow data from a five hole pitot tube

Inflow data from a small sensor airfoil

Wind tunnel test of flaps and inflow sensors

Control by inflow signals – aero normal force loading at one radial position considered

unsteady

$$F_{N} = \frac{1}{2} \rho V_{r}^{2} C_{N}(\alpha) c$$
$$f_{c} = K_{\alpha} \left(\alpha - \overline{\alpha} \right) + \left(\frac{V_{r}^{2} - \overline{V_{r}^{2}}}{V_{r}^{2}} \right) K_{V_{r}}$$

where αV_r are exclude band filtered from 0.1 to 1Hz and f_c is the control signal

 K_{α} and K_{V_r} are constants determined in order to maximize load reduction

Presentation at XXIII ICTAM 19-24 August 2012, Beijing, China

DTU

Control by inflow signals – aero force loading at one radial position considered

Ideal control: F_{Nc}

$$V_c = F_N - f_c V_R^2$$

where F_{Nc} is the controlled normal force

Flap control:
$$f_c \longrightarrow$$
 Flap aerodynamics +
flap actuator dynamics F_{Nc}

The flap control is numerically simulated by the aeroelastic code HAWC2 where the flap aerodynamics and flap actuator dynamics are modelled

Load reduction of normal force at radius 50 m – 10% TI

Ideal control – fatigue reductions

Load reduction of normal force at radius 50 m – 10% TI

Flap control – fatique reductions

Load reduction of normal force at radius 50 m – 10% TI

Presentation at XXIII ICTAM 19-24 August 2012, Beijing, China

DTU

Flap amplitude saturates considerably at TI = 20%

Presentation at XXIII ICTAM 19-24 August 2012, Beijing, China

DTU

Ħ

Load reduction of normal force at radius 50 m – influence of turbulence

Flap angle constrained to : +- 5 deg.

Influence of frequency band on flap actuation speed – ti=10%

Influence of separation of flow sensor position from flap position

FN at radius 50 m controlled from an inflow sensor at different inboard separation distances

FN at radius 50 m controlled from an inflow sensor at different inboard separation distances

Influence of actuator time constant

Influence of actuator time constant

Preliminary analysis of measurements on an 80m diameter rotor

Example of 2MW rotor with inflow sensors

Four 5 hole pitot tubes installed on a NM80 turbine with an 80m rotor

Aero normal forces measured at four radial positions by pressure holes

Experiment carried out within the DAN-AERO project from 2007-2010: LM, Vestas, Siemens, DONG Energy and Risø DTU

27

NM80 turbine – measured inflow at R=30m

Presentation at XXIII ICTAM 19-24 August 2012, Beijing, China

DTU

Ħ

NM80 turbine – control of FN at R=30m from inflow measurement

Presentation at XXIII ICTAM 19-24 August 2012, Beijing, China

DTU

NM80 turbine – control of FN at R=30m from inflow measurement

Fatt. Red. 35.6%

Conclusions (1of2) on use of inflow data for load alleviation control

- for the optimal positioned inflow sensor more than 90% of the absolute achievable load reduction can be obtained by a flap
- information on the relative velocity variations
 contributes with about 10% to the load reduction
- flap aerodynamics (aerodynamic response delay) reduce only minorly the ideal load reduction potential

Conclusions (2 of 2) on use of inflow data for load alleviation control

- one inflow sensor could be used for a 5 10m long flap, bandwidth 0.1-1Hz
- for bigger separation distance the control signal bandwidth should be reduced
- rotor size has considerable influence on reduction of load alleviation due to flap actuator time constant

Thank you for your attention!