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Abstract 
 
Recent simulations in 2D and 3D as well as wind 
tunnel testing has shown a big potential for fatigue 
load reduction using Deformable Trailing Edge 
Geometry (DTEG). The present work continues the 
investigations by determining the effect of the DTEG 
control system on flutter velocity in the 2D case. The 
focus of this work is on the difference in flutter 
velocity without flaps, using conventional rigid flaps 
and continuously DTEG. The effect of the flap control 
system parameters, including both PD control 
parameters as well as control system timelag is 
investigated. 
Keywords:  aeroservoelasticity, stability, control. 

1 Introduction 

The development in wind turbines has led to relatively 
softer blades over the years. This makes fast 
regulation using the pitch system unpractical or even 
impossible since the blades are considerably deflected 
in the flapwise direction at most wind speeds. Recent 
work has shown a big potential of fatigue load 
reduction using Deformable Trailing Edge Geometry 
(DTEG), where local variations in geometry, and 
hence aeroelastic control along the blade, is possible. 
DTEG can be considered a generalization of the 
commonly used rigid flaps (as found on conventional 
aeroplanes), where the deformation of the trailing 
edge is described by a mode shape. The mode shape 
for conventional rigid flaps is linear. Deformation 
modes that are not linear can be obtained using for 
instance piezoelectric actuators. Figure 1 show an 
example of a DTEG. 
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Figure 1: Example of a 10% chord-length DTEG de-
flected 5 degrees. Note that the deflection mode shape 
is not linear as opposed to conventional trailing edge 
flaps. 

The work carried out on using DTEG for fatigue load 
reduction so far has analysed the load reduction 
potential using 2D [1] and 3D [2] simulations, which 
has revealed a big potential for fatigue load reduction 
using this type of control surfaces. Futhermore, a 2D 
airfoil section equipped with piezoelectric actuators 
have been tested in the Velux wind tunnel [3] to 
validate the aerodynamic model used in the 
simulations.  
Much work has been carried out on load reduction 
using the pitch systems on the wind turbines [4, 5]. 
Regarding the stability of wind turbine wings, Lobitz 
[6] concluded that the classical flutter limit is reached 
for a typical 1.5 MW blade if the rotational velocity is 
multiplied by a factor two. However, Hansen [7] 
concluded that single blade analysis does generally 
not yield conservative estimation of the onset of 
instabilities. 
 
The present work continues the investigations of 
DTEG by determining the effect of DTEG on flutter 
velocity in the 2D case. Specifically, focus will be on 
the difference in flutter velocity without flaps, using 
conventional rigid flaps and continuously DTEG. 
Moreover, the effect of the flap control system will be 
investigated. 



The equations that describe the 2D aeroservoelastic 
system are rewritten in their equivalent state space 
formulation. Therefore, the response of the linear 
system is describable by a matrix equation, for which 
stability is determined using an eigenvalue approach. 
The aerodynamic model used was developed by 
Gaunaa [8], and is a potential-flow model that can 
predict the response of arbitrarily deforming thin 
airfoils for non-stalling flows, which correspond to 
the outer section son a PRVS wind turbine. The 
structural model is a linear spring/damper system for 
the elastic deformation of a rigid airfoil to which the 
inertial forces associated with deflection of the trailing 
edge are added. The last part of the aeroservoelastic 
system is the control part, for which a PD regulator on 
the flapwise position is used. Furthermore, system 
time-delay in the control system is modelled using a 
first-order differential equation. 
 
The present work is part of the ADAPWING2 project 
carried out at Risø. 
 
2 Theoretical Model 

The full aeroservoelastic model consists of models for 
aerodynamics, elastic deformation of the whole airfoil 
section in the heave and torsional directions, and a 
model for the control system including control system 
time lag. The submodels are described briefly below. 
 
2.1 Aerodynamics 
The aerodynamic model used in the present work was 
developed by Gaunaa [8], and is a generalization of 
the work by Theodorsen [9] to take into account the 
unsteady aerodynamic forces from an arbitrary defor-
mation of the camberline. If the airfoil can move in 
the heave-direction, Y, (perpendicular to the wind) 
and in the torsional direction, α, and the deformation 
of the aifoil trailing edge is given by the trailing edge 
angle, β, as defined on Figure 2, then the unsteady 
aerodynamic forces (Lift and Moment) can be ex-
pressed as 
 
 
The functions 

1A
f  and 

2A
f  are linear, and Az  is 

the state variables describing the time lag linked to the 
development of the unsteady wake. These are deter-
mined from the first order differential equation 
 
 
Q is given by 

),,(34/3 ββα &
AfQ −=  

where 4/3α is the relative three quarter angle of attack 

at the three quarter chord point, and 3Af is a linear 
function. The remaining constants in the differential 

equation are the constants that describe the 
approximation of the step response function. The 
values of these are given in Table 1. 
 

i 
iA  ib  

1 0.0821 0.0199 
2 0.1429 0.7817 
3 0.3939 0.1453 

 

Table 1: Constants for the step response function, 

∑ −−=Φ
i

b
i

ieA ττ 1)( , for the Risø-B1-18 airfoil.  

A thorough description of the aerodynamic model can 
be found in [8]. 
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Figure 2: Definition of the trailing edge deformation 
angle β, which in the shown case is 5 degrees. The 
shown deflection shape is the curved one used in the 
computations to follow. 

 
2.2 Heaving Motion 
The force balance between elastic, damping, aerody-
namic and intertial forces in the heaving direction is 
given by the second order differential equation 

FictAeroYY LLYKCYMlMY +=+++ &&&&& α  

AeroL is the lift forces from the aerodynamic model, 

and FictL is the addition to the inertial lift forces from 
acceleration of the trailing edge.  

∫−=
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)(xsρ  and )(xyβ  are the unit depth density and 
trailing edge unit deformation shape functions, 
respectively. x is the local chordwise coordinate. 
 
2.3 Pitching Motion 
Analogous to the Equation for the heaving motion, the 
second order Equation for the torsional motion reads 
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AeroM  is the moment from the aerodynamic forces, 

and FictM  is the addition to the intertial moment 
from the inertial forces due to the acceleration of the 
trailing edge. 

∫+=
xTe

xLe sFictaFict dxxyxxLxM )()( βρβ&&  

 
2.4 Control Algorithm 
In the earlier works regarding fluctuating load allevia-
tion using DTEG [1,2] it was concluded, that a simple 
Proportional Differential (PD) control on the heave 
coordinate Y was quite effective in terms of reducing 
flapwise fatigue loads. Therefore a simple PD control 
algorithm is studied in this work also: 
 
 

IY  is the running mean heave coordinate 
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2.5 Time-lag model 
The time-lag in the control system is modelled with a 
first-order differential equation 
 
 
where ./)2/1ln( 2/1tbLag −=  
This way the time lag is quantified with the control 
system half-time 2/1t . This time is the time it takes 

for the physical trailing edge angle, β , to reach half 
the value of a step signal in the control algorithm out-
put, Ctrlβ . 
 
2.4 Stability 
If oscillations around a mean value is considered, then 
all sub-models described above can be combined into 
one single matrix equation 

0~~
=+ xBxA & , where 

[ ]T
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The stability of such a matrix system can be deter-
mined from standard eigenvalue tools. The one used 
in the present work is from Matlab’s standard built-in 
functions. 
 
3 Basic Computational Case 

The positioning of the mass, elastic and aerodynamic 
centers in the aerofoil design is an important consid-
eration in any discussion of aeroelastic stability; espe-
cially for the occurrence of flutter. For the specific 
blade section used in the present investigations, the 
aerodynamic and structural properties are given in 

Table 2 below. The values are identical to the one 
used by Buhl [1].  
 
Description unit value 
Chord-length m 1.0 
Position of elastic axis 
from LE 

m 0.3 

Position of CG from LE m 0.35 
Total mass of airfoil per 
unit depth 

kg 40 

Intertial moment around 
CG 

 2.0 

Eigen-freq. in heave direc-
tion 

Hz 1.0 

Eigen-freq. in pitching 
direction 

Hz 10.0 

Linear damping in the 
heave direction 

 0 

Linear damping in the 
pitching direction 

 0 

Proportional Control Con-
stant 

 -400 

Differential Control Con-
stant 

 -25 

Control time lag reaction 
half-time, 2/1t  

s 0.0 

Air density Kg/m3 1.225 
 

Table 2: Structural data for the 2D profile section. 

Furthermore, the mass distribution, )(xsρ , for de-
termining the intertial loads from deflection of the 
Trailing edge of the airfoil is shown in Figure 3 be-
low. 
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Figure 3: Mass distribution, )(xsρ , for the basic 
computational case. 

According to Buhl [1], the reduction of the standard 
deviation of the normal force with the basic control 

.)( YYICtrl BYAYY &+−=β

CtrlLagLag bb βββ =+&



settings as shown in Table 2 yields a 74% reduction 
compared to the uncontrolled case. 
 

4 Verification and Results 

The model is verified against the time-marching 
DTEG time simulation tool used by Buhl [1]. The 
flutter speeds, ie. the speeds at which initial 
amplitudes increase (negative total damping), were 
within a few percent of the ones found with the time 
stepping method for the test cases investigated. 
However, a more rigorous validation of the code with 
the time-stepping method could be justified. 
For referene, the flutter speeds without control, and 
with the basic control algorithm using  both a flat and 
a curved flap without time-lag was computed. The 
results are shown in Table 3.  
 
 
Computational 
case 

Basic 
comp. 
case. No 
flap/contro
l 

Basic 
comp. 
case. Flat 
flap 

Basic 
comp. 
case. 
Curved 
flap 

Flutter 
velocity 

142.9 m/s 95.8 m/s 90.7 m/s 

Table 3: Flutter velocities for the basic computational 
case with no flap/no control, with a flat falp and with 
a curved flap. 

As seen from the results in Table 3, the addition of  a 
trailing edge flap control system with the chosen 
control algorithm lowers the flutter velocity 
considerably, for both flap deformation mode shapes. 
Figure 4 below shows the influence of the trailing 
edge flap mass on the stability limits. 
 

 

Figure 4: Influence of the mass of the flap on the 
flutter velocity in the case of a curved and a flat flap. 
When the flap mass scaling factor is unity, we have 
the basic computational case. 

As seen from Figure 4, there is almost no influence 
from the flap mass on the flutter velocity. This may be 

attributed to the relatively weak coupling between the 
driven trailing edge flap with it’s associated mass, and 
the heave and pitching force balances. The intertial 
forces fed into the heave and pitching equations are 
small compared to the other terms: heave/pitch 
coupling and aerodynamic forces. 
An investigation of the effect of the control constants 
AY and BY on the flutter velocity is shown in Figure 5. 

 
Figure 5: Influence of the control algorithm 
parameters on the flutter velocity. No time-lag is 
present in the control system. When the control 
parameter scaling factor factor is one, the basic 
computational case is obtained. 

The basic computational control system constants are 
both multiplied with the scaling factor, shown along 
the x-axis of Figure 5. The results indicate that the 
flutter velocity drops very rapidly from having no 
control to just controlling slightly (control parameter 
scaling facor = 0.1) , after which the flutter velocity 
remains fairly constant up to control scaling parameter 
0.9 in the curved flap case and 0.95 in the flat flap 
case, after which it drops slightly. 

In the investigations on the load reduction potential of 
trailing edge flap control methods it was concluded 
that system time lag was a major factor in the 
potential. In order to investigate the effect of time lag 
on the flutter velocity, Figure 6 show the influence of 
system reaction half-time on the flutter velocity. 

 
 



 
Figure 6: Influence of the control system time lag on 
flutter velocity. When 2/1t  is zero, we have the basic 
computational case. 

From the figures, it is seen that the effect of the time-
lag on the flutter velocity is negative. An increased 
time-lag results in a reduced flutter velocity. 
 
As c concluding remark in the results section, it 
should be mentioned that these computations are all 
based on the same basic computational case, and that 
most of these conclusions may have had different 
conclusions if the basic computational case had been 
different. This is among the further work to be done 
with the current analysis tool. 
 
5 Conclusions 

A new model for determination of the stability of the 
equilibrium of the 2D aeroservoelastic has been pro-
posed. A preliminary verification against a time-
stepping method show good agreement. The model 
was used to investigate the effect of the DTEG control 
system on the stability of the equilibrium of a 2D 
wind turbine section. The results indicate that the rela-
tive air velocity at which instabilities occur may be 
reduced significantly with the addition of DTEG con-
trol systems, and that the type of deformation shape 
was of minor importance. However, further studies 
are needed to investigate fully the implications of add-
ing a DTEG control system on the stability limits of 
the equilibrium state of the 2D system. 
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